鋼結(jié)構(gòu)體系穩(wěn)定問題的可靠性研究
實際結(jié)構(gòu)由于存在各種各樣的隨機缺陷的影響,與理想結(jié)構(gòu)存在差異。對于缺陷敏感性結(jié)構(gòu),缺陷可能會 造成結(jié)構(gòu)穩(wěn)定性的急劇下降,所以有必要考慮隨機參數(shù)的影響,引入可靠度分析方法,進行穩(wěn)定問題的可 靠性研究。由于大跨度鋼結(jié)構(gòu)體系的可靠性研究涉及較多的力學和數(shù)學的知識,有一定難度,目前這方面的 研究成果有限。網(wǎng)殼結(jié)構(gòu)的穩(wěn)定性的可靠性分析和設(shè)計進行了詳盡的研究、豐富了結(jié)構(gòu)可靠度 的理論和計算方法,并將其應用于工程結(jié)構(gòu)的分析和設(shè)計,顯示了良好的前景。
(一)結(jié)構(gòu)分析中的不確定性因素來源
影響剛結(jié)構(gòu)體系穩(wěn)定性的不確定性的基本變量許多是隨機的,一般分為三類:
1)物理、幾何不確定性:如材料(彈性模量,屈服應力,泊松比等)、桿件尺寸、截面積、殘余應力、 初始變形等。
2)統(tǒng)計的不確定性:在統(tǒng)計與穩(wěn)定性有關(guān)的物理量和幾何量時,總是根據(jù)有限樣本來選擇概率密度分布函數(shù), 因此帶來一定的經(jīng)驗性。這種不確定性稱為統(tǒng)計的不確定性,是由于缺乏信息造成的。
3)模型的不確定性:為了對結(jié)構(gòu)進行分析,所提的假設(shè)、數(shù)學模型、邊界條件以及目前技術(shù)水平難以在計算 中反映的種種因素,所導致的理論值與實際承載力的差異,都歸結(jié)為模型的不確定性。
(二)結(jié)構(gòu)的可靠性研究
國內(nèi)外學者對結(jié)構(gòu)可靠度理論已經(jīng)進行了較為深入的研究,在可靠度計算方法及復雜結(jié)構(gòu)可靠度分析方面 取得了很多研究成果。
任何工程分析和設(shè)計的最終目的是使設(shè)計的結(jié)構(gòu)在不同要求下滿足不同的功能-安全性、使用性、耐久性由 于不確定性的存在,就需要把這些不確定性加入工程設(shè)計中,從而產(chǎn)生了很多可靠度方法。為了估計結(jié)構(gòu)可 靠度,首先要解決相關(guān)荷載和抵抗力參數(shù)以及它們之間的函數(shù)關(guān)系,這種關(guān)系(又稱功能函數(shù))記作
式中X1,X2,…,Xn 是隨機變量。
把極限狀態(tài)(或失效面)定義為Z 0,則描述可靠度的參數(shù)可靠性指標 定義為坐標原點到失效面的最小距離 目前用于可靠性指標 計算一般有兩種方法:一次可靠度方法(FORM)和二次可靠度方法(SORM)。
(三)目前用于結(jié)構(gòu)可靠度分析的數(shù)值方法評述
對于復雜結(jié)構(gòu), 功能函數(shù)g(x)通常不能明確表達為輸入隨機變量的函數(shù),結(jié)構(gòu)的響應通常通過數(shù)值方法 (如有限元)來計算。這些數(shù)值方法一般分為三類:(1)蒙特卡羅模擬法(Monte Carlo Simulation) (包括高效的取樣法和方差縮減技術(shù));(2)響應面法(Response Surface Method))基于敏感 性的分析方法(Sensitivity-based Approach)。
1)蒙特卡羅模擬法(Monte Carlo Simulation)
蒙特卡羅模擬法的基本思想是在進行每一次確定性分析之前隨機產(chǎn)生一組輸入變量,大量重復的進行確定性 分析之后,對結(jié)構(gòu)的響應輸出參數(shù)進行統(tǒng)計分析,計算出結(jié)構(gòu)的可靠性。把蒙特卡羅模擬法與有限元法結(jié)合 起來,就得到蒙特卡羅有限元法。通常把蒙特卡羅有限元法作為可靠度計算的相對精確解,但要達到較高的 精度,必須取足夠的樣本數(shù),因此計算工作量相當浩大。
2)響應面法(Response Surface Method)
響應面法的基本思想是通過近似構(gòu)造一個具有明確表達形式的多項式來表達隱式功能函數(shù)g(X)(一次或二 次多項式),其中X是包含所有荷載和抗力的隨機變量的一個向量。本質(zhì)上來說,響應面法是一套統(tǒng)計方法, 用這種方法來尋找考慮了輸入變量值的變異或不確定性之后的響應最佳值。而失效概率通過一次或二次可靠 度方法計算。在響應面法中,對于一個具有大量隨機變量的問題來說,準確構(gòu)造一個近似多項式的所需的確 定性分析是相當巨大的,因此這種方法很耗時。即使對于一個具有少量隨機變量的問題來說,響應面法對可 靠度估計的準確性與功能函數(shù)的近似多項式的準確性有關(guān)。如果隱含型的功能函數(shù)具有很強的非線性,這種 函數(shù)逼近是非常近似的,可靠度估計也是非常近似的。
3)基于敏感性的分析方法(Sensitivity-based Approach)
基于敏感性的分析法和一次可靠度方法(FORM)/二次可靠度方法(SORM)結(jié)合起來分析具有隱式型的功能 函數(shù)的可靠性問題,能克服蒙特卡羅模擬法和響應面法的缺點。這種方法在尋找控制點(也叫最小距離點) 過程中,每一步迭代所使用的信息都是功能函數(shù)的真實值和真實梯度,并使用優(yōu)化方法使控制點收斂于最小 距離點,同蒙特卡羅模擬法和響應面法相比,它耗時小,也比響應面法更準確。另外,基于敏感性的分析方 法能夠從設(shè)計的角度知道結(jié)構(gòu)響應對基本隨機變量的敏感性。從而有可能基于隨機變量的不確定性和它們對 結(jié)構(gòu)特性的影響得出不同隨機變量的不同設(shè)計安全系數(shù)?;诿舾行缘姆治龇椒ㄒ部梢栽诓挥绊懹嬎銣蚀_性 的條件下,忽略那些對結(jié)構(gòu)可靠性影響不大的隨機變量,從而節(jié)省計算時間?;诿舾行缘姆治龇椒ㄖ锌梢?使用迭代攝動分析技術(shù),并和有限元法結(jié)合起來產(chǎn)生所謂的隨機有限元法(Stochastic Finite Element Me thod)。這種使用迭代攝動技術(shù)的隨機有限元法可用來進行結(jié)構(gòu)的非線性分析。
4)鋼結(jié)構(gòu)體系穩(wěn)定性的可靠性研究方法
隨機有限元法為剛結(jié)構(gòu)體系穩(wěn)定性的可靠性研究提供了強有力的分析手段,由于隨機有限元能夠考慮實際結(jié) 構(gòu)存在各種各樣的隨機性因素的影響,所以可以預計隨機有限元法在這一研究領(lǐng)域?qū)辛己玫膽们熬啊?/P>
?2009年結(jié)構(gòu)工程師輔導招生簡章
?二級結(jié)構(gòu)工程師
最新資訊
- 2024年度二級注冊結(jié)構(gòu)工程師專業(yè)考試資料:規(guī)范、標準、規(guī)程2024-08-13
- 2024年度一級注冊結(jié)構(gòu)工程師專業(yè)考試資料:規(guī)范、標準、規(guī)程2024-08-13
- 環(huán)球網(wǎng)校雙11預售開啟!定金百倍膨脹,直播再返現(xiàn)金2023-10-25
- 環(huán)球網(wǎng)校結(jié)構(gòu)工程師雙11活動來啦,限時優(yōu)惠!2023-10-25
- 注冊結(jié)構(gòu)工程師考試大綱下載2023-05-16
- 2023年一級注冊結(jié)構(gòu)工程師考試大綱內(nèi)容2023-04-14
- 2023年結(jié)構(gòu)工程師教材內(nèi)容變動對比2023-04-10
- 2023年注冊結(jié)構(gòu)工程師專業(yè)基礎(chǔ)教材變動對比2023-04-03
- 2023年新版注冊結(jié)構(gòu)工程師基礎(chǔ)教材2023-03-29
- 2023一級結(jié)構(gòu)工程師基礎(chǔ)考試真題2023-01-29